• Services

    Injection Moulding

    Injection Moulding

    CNC Machining

    CNC Milling

    CNC Turning

    Low Volume Production

    Fast CNC Machining (3-Day)

    Materials

    Finishing

    Production Speeds

    3, 7 & 12 Days

    3D Printing

    Selective Laser Sintering

    Stereolithography

    Digital Light Projection

    Micro 3D Printing

    Filament 3D Printing

    Matrix: Instant Quote & Order

    Materials

    Finishing

    Production Speeds

    Overnight, 3, 7 & 12 Days

    Other Expertise

    Vacuum Casting

    Model Making

    Laser Cutting

    Rapid Prototyping

    Inspection Services

    Low Volume Manufacturing

     

    Services Menu

    Process Datasheets

    Learn more about the processes by downloading our datasheets.

    DATASHEETS

    Production Speeds | Process Datasheets | Material Datasheets | Quote | Matrix Login

  • Materials

    Material by Service

    Injection Moulding
    Moulded plastic components and prototype parts

    CNC Machining
    CNC machined parts from 3 days

    3D Printing
    Additive manufacturing with a choice of materials - overnight printing available

    Vacuum Casting
    Resin casting for low volume production parts

    Materials Menu

    Materials Datasheets

    Browse our materials datasheets for details of physical, mechanical, and thermal properties.

    DATASHEETS

    Production Speeds | Process Datasheets | Material Datasheets | Quote | Matrix Login

  • Resources

    Resources

    Latest News
    Stay up to date with news and service-specific insights.

    Case Studies
    Discover how engineers and designers use our services.

    Learning Hub
    Your questions answered through videos and articles.

    Process Datasheets
    Download detailed process datasheets.

    Material Datasheets
    Explore materials for CNC Machining and 3D Printing

    Guides & White Papers
    Design guidance and insights from our technical team.

    Resources Menu

    Guide to Prototype Projects

    Our full service overview – download and share.

    GUIDE TO PP

    Production Speeds | Process Datasheets | Material Datasheets | Quote | Matrix Login

  • About

    About us

    Our Story
    Discover our journey and how we’ve evolved

    Our Team
    Meet the people behind the parts

    Our Values
    Understand what drives us

    Our Plant List
    Explore our in-house equipment and technologies

    Our Vacancies
    See the roles we’re hiring for

    Your Account

    Matrix
    Get instant quotes and place orders

    Apply for an Account
    Open a credit account and pay by Direct Debit

    Quality Assurance

    Key Policies
    View our ISO certifications and company policies

    Sustainability

    Sustainability
    See how we’re reducing environmental impact

    About Menu

    Matrix | Instant Quotes

    Get an instant quote for your SLS, SLA, and DLP 3D printed parts in just a few clicks.

    MATRIX

    Production Speeds | Process Datasheets | Material Datasheets | Quote | Matrix Login

What are you looking for?
Trending Searches: 3D Printing CNC Machining Injection Moulding Matrix
CONTACT
QUOTE
  1. Home
  2. Model Making
  3. Professional model making – how is it done?

Professional model making – how is it done?

Professional model making is a core activity for us. In fact, Prototype Projects started in model making before expanding to provide CNC machining, 3D printing, vacuum casting and laser cutting. While these other services are self-explanatory, customers can view model making as something of a ‘black art’. In this article, therefore, we will explain how we go about making models – and how it is, in fact, a fine art.

Start at the beginning

Model making projects typically start with a customer enquiry followed by a discussion, as it is more difficult to quote for models than, say, parts made by CNC machining or 3D printing. This discussion is essential because no two projects are the same. It will cover issues such as the intended use for the model: will it be a display model in a case, is it for testing a function or ergonomics, or is it intended for usability trials or for handling by large numbers of visitors to a trade exhibition? Maybe the model will be a theatrical prop for a stage production or a movie, or perhaps it is required for filming or photographing an advertisement. Furthermore, whether the customer needs one model or several can have a bearing on the production technologies selected.

Something else we will discuss is whether the model incorporates components or sub-assemblies provided by the customer. These could be an existing product that needs modifying, or specialist prototype parts such a PCB or custom digital display.

Once we understand the required aesthetics, functionality, robustness and quantities, we can talk about materials, manufacturing technologies and finishes.

At the end of the discussion, we will determine how we would make and finish the model, and only then can we prepare a quote.

Model making technologies

A vital aspect of model making is choosing the optimum technologies for making the various parts, and this is where the experience of our highly skilled and experienced model making team proves invaluable. In most cases, a professional model making project will employ multiple technologies, and certain parts may also be fabricated by hand.

  • 3D printing: parts can be 3D printed in a variety of plastic materials, including hard, tough and elastomeric grades. We can also print parts in clear materials for polishing to achieve glass-like clarity. 3D printing is highly versatile for both one-offs and multiple parts. With five different 3D printing technologies in-house, and a choice of materials, 3D printing plays a key role in our model making capability. For models incorporating small parts with high accuracy, extremely fine details and exceptionally smooth surfaces, we have recently invested in a PµSL 3D printer.
  • CNC machining: this technology is more accurate than 3D printing technologies (other than PµSL) and enables parts to be made in a much wider choice of materials. These include specialist plastics such as PTFE and PEEK, as well as a metals ranging from aluminium, stainless steel, mild steel and brass, through to phosphor bronze, tool steels and titanium alloys. If multiple parts are required, CNC machining achieves excellent part-to-part repeatability. Depending on the model’s requirements, we can also machine Tufnol composites, modelling foams, MDF and tooling board. Note that our CNC machining capability covers both milling and turning.
  • Vacuum casting: when customers need multiple models, we can create a master pattern – usually by 3D printing – then use vacuum casting to produce multiple castings. Parts are cast in polyurethane resin, but this material’s properties can be specified to replicate anything from soft elastomers through to glass-reinforced nylon. Another application for vacuum casting is overmoulding when, for example, a model needs soft elastomeric grips on selected areas of the exterior surfaces.
  • Laser cutting: we can cut a variety of thin materials, though we outsource laser cutting (and photochemical etching) of metals. Laser cutting is very quick and cost-effective for low volumes and it can also be the best option for cutting one-offs such as elastomeric gaskets for liquid- or gas-tight assemblies.

To complement these technologies, our model makers can adapt or modify existing production components, as well as source and repurpose or modify standard off-the-shelf components. We can also procure specialist custom parts such as springs and pressings.

Putting it all together

Assembly of the components parts is just as important as the manufacture of the individual parts if the finished model is to have the required aesthetics and functionality. The parts might need a small amount of fettling during the assembly stage to ensure surfaces are aligned correctly and mechanisms operate smoothly and have the desired feel.

If the assembly is likely to require subsequent dismantling for modification or adjustment, threaded fasteners can be used. Permanent joints can be made with adhesives. Snap fits can be 3D printed successfully, depending on the material, but are used less frequently for professional model making because of the added complexity of the joint design.

How we finish models

The choice of finishes depends on several factors such as the model’s intended use and operating environment, its materials of construction and the production technologies. Sometimes secondary finishes are not necessary, such as vacuum cast parts for which the polyurethane resin has been dyed a specific colour, or if parts have been CNC machined from stainless steel or brass.

SLS parts can be dyed in almost any colour. Plastic parts made using other 3D printing technologies can generally be spray painted in gloss, matt or eggshell finishes. In addition, parts can have a rubberised soft-feel finish applied.

3D printed parts might be lightly bead blasted prior to being dyed or painted, though sometimes the bead blast finish is sufficient on its own.

Parts 3D printed in clear grades are often polished and lacquered to give a glass-like appearance, but they can also be polished and tinted for parts such as automotive light lenses.

SLS parts can be slightly porous, so we can lacquer these to seal the surface.

We can make elastomeric parts using our PolyJet 3D printer but, because of the parts’ flexibility, we do not apply secondary finishes to these.

For functional parts, we can apply a blackout/RFI/EMC coating to the internal surfaces.

Parts 3D printed using PµSL technology benefit from high accuracy, extremely fine detail and exceptionally smooth surfaces. We therefore do not apply secondary finishes to these parts because doing so would compromise the part’s inherent characteristics.

The finishes outlined above relate primarily to 3D printed parts but can also be appropriate for parts CNC machined from plastics, depending on the material. When we CNC machine parts from metals, the choice of finishes is somewhat different, depending on the material and intended use for the model. If the parts are primarily functional, they might simply be deburred and cleaned.

Other options include hand polishing or bead blasting for aluminium, stainless steel and brass parts. Mild steel parts can be primed and painted.

The finishing facilities that we have in-house suit most customer requirements. However, we can also outsource specialist finishes. Examples include vacuum metallisation, electroplating, electrochemical polishing of stainless steel parts, clear and coloured anodising of aluminium alloy parts, powder coating, chemical blacking of steel parts, and heat treatments or other surface hardening processes for tool steels.

If the model is required to look identical to a production item, we can apply text, logos, symbols, or other graphics. This is usually done using rubdowns (dry transfers), waterslide decals and screen printing.

Protection

To complement and protect the models we make, we can also supply transit and display cases. These can take many forms, such as shadow foam-lined boxes or carry cases for small models, customised flight cases for large models, and any size of clear display cases with the model mounted on a base board.

Where necessary, transit cases and display cases can also accommodate accessories that would be used with the model. Cases can be finished with labels and logos, and display cases can be equipped with integral lighting.

No two the same

Compared with producing parts by 3D printing or CNC machining, model making projects are far more involved. No two projects are the same, which is why the skill and experience of the model making team is so important. Identifying the optimum way to make the various parts of a model is key to the success of a project, and also minimises the cost and ensures the model is delivered on time.

Talk to us

If you need professional model making services, talk to our experts by calling 01763 249760, or complete the enquiry form below.

Recent Popular
How to add threads to SLS 3D printed parts

How to add threads to SLS 3D ...

9 September 2025 Comments Off on How to add threads to SLS 3D printed parts
Injection Moulding at Prototype Projects

The Return of Injection Moulding at Prototype ...

28 August 2025 Comments Off on The Return of Injection Moulding at Prototype Projects
Injection Moulding Benefits

Top 5 Benefits of Injection Moulding for ...

21 August 2025 Comments Off on Top 5 Benefits of Injection Moulding for Your Product Development
Industrial 3D Printing for Production Parts

Industrial 3D Printing for Production Parts

14 August 2025 Comments Off on Industrial 3D Printing for Production Parts
Injection Moulding Prototyping

How Injection Moulding Complements Your Prototyping Journey

7 August 2025 Comments Off on How Injection Moulding Complements Your Prototyping Journey
James Dyson

Sir James Dyson: the man behind the ...

10 May 2019 0
Applications and design tips for SLS: a guide

Applications and design tips for SLS: a ...

27 November 2019 0
Prototyping medical devices for patient contact

Prototyping medical devices for patient contact

22 September 2021 0
silicone tooling

LUMA-iD develops Buddy with silicone tooling

21 July 2022 0
CNC Machining and CNC Turning

Understanding the Difference Between CNC Milling and ...

15 April 2025 Comments Off on Understanding the Difference Between CNC Milling and CNC Turning for Better Design Choices

Comments are closed

Next Day Dispatch

Delivering Overnight Printing

Email: office@prototypeprojects.com
Tel: 01763 249760

Prototype Projects Ltd
Units 1&2, Greenfield
Royston,
Herts SG8 5HN

If you have questions about any aspect of our service, please contact us.


    UKAS
    Cert no. 11512-QMS-001
    Cert no. 11512-EMS-001
    Made In Britain - Prototype Projects
    EHAAT proud supporter
    Royston Business Awards - Prototype Projects

    Sign up to our Company and Industry newsletter

    Sign up here

    Prototype Projects is a family-run business specialising in 3D Printing, CNC Machining, Model Making and Vacuum Casting. Established in 1980, the company is located in Royston, Hertfordshire.

    Trustpilot - Prototype Projects

    About | Our team | Customers | Work with us

    CNC Machining

    CNC Turning
    CNC Milling
    CNC Low Volume Production
    CNC Materials
    CNC Finishing
    CNC 3-Day
    Production Speeds

    3D Printing

    SLS
    SLA
    Micro 3D Printing
    Digital Light Projection
    Filament 3D Printing
    3D Printing Materials
    3D Printing Finishing
    Production Speeds
    Matrix

    Other services

    Model Making
    Vacuum Casting
    Laser Cutting
    Inspection
    Low Volume Manufacturing

    Contact us

    Prototype Projects Ltd
    Units 1 &2, Greenfield
    Royston
    Herts SG8 5HN

    office@prototypeprojects.com
    01763 249760

    Find us

    What3Words: ///shows.formed.dispensed

    © 2025 - Prototype Projects | Terms | Privacy | Web Design by Indigo Ross

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies.
    However, you may visit Cookie Settingsto provide a controlled consent. Reject All
    ACCEPT ALL
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT